Neural Networks

Exam Number: Y3917254

Abstract—This report details the development and evaluation
of a CNN for classifying the Flowers-102 dataset. The architecture
features two convolutional layers with ELU activation, batch nor-
malization, max pooling, dropout, and fully connected layers for
final classification. Data augmentation techniques were applied,
and the Adam optimizer with a cyclic learning rate scheduler
was used for training. The CNN achieved a 48.74% accuracy on
the Flowers-102 test set.

I. INTRODUCTION

Classifying images with Convolutional Neural Networks
(CNNs) involves training a model to identify the categories
of new images based on a set of labeled training images. In
the past, this task depended on manually crafted features and
traditional machine learning methods such as SVMs and k-
NN, which often lacked the ability to adapt to various datasets.
The rise of deep learning, especially CNNs, revolutionized this
domain by enabling automatic learning of feature hierarchies
directly from the data, leading to notable gains in precision
and robustness, as evidenced by the results on comprehensive
datasets like ImageNet.The significance of image classification
spans critical sectors, including medical diagnostics, self-
driving cars, and the sorting of digital images, where precise
models are crucial for dependability and operational efficiency.
This report focuses on the Flowers-102 classification task,
which involves distinguishing between 102 different flower
species based on their images. I made a CNN with con-
volutional layers for feature extraction, batch normalization
for consistent training, dropout layers to prevent overfitting,
and dense layers for classification. To enhance generalization,
I used data augmentation techniques such as random flips,
rotations, and color variations.

II. METHOD

This section describes the architecture of the convolutional
neural network (CNN) developed for classifying images from
the FLowers-102 dataset, along with the training procedure
and justification for chosen methods.

A. Network Architecture

The CNN architecture consists of two convolutional layers,
each followed by batch normalization and max-pooling layers,
to extract hierarchical features from the input images. The
architecture also includes dropout layers to prevent overfitting
and fully connected layers to facilitate the final classification.

The detailed architecture is as follows:

¢ Convolutional Layer 1: 32 filters of size 3x3, with
padding of 1, followed by batch normalization and ELU
activation.

« Max Pooling Layer 1: 2x2 pooling.

o Convolutional Layer 2: 64 filters of size 3x3, with
padding of 1, followed by batch normalization and ELU
activation.

« Max Pooling Layer 2: 2x2 pooling.

o Fully Connected Layer 1: 256 units, followed by batch
normalization, ELU activation, and a dropout rate of 0.4.

e Output Layer: 102 units (corresponding to the number
of flower categories), with softmax activation for classi-
fication.

B. Data Augmentation

To enhance the generalization capability of the model,
extensive data augmentation techniques were employed during
the training phase. These techniques included:

o Random horizontal and vertical flips

+ Random rotations up to 70 degrees

o Color jittering (brightness, contrast, saturation, hue)
e Random affine transformations (shear, scale)

o Random grayscaling with a probability of 0.4

C. Training Procedure

The training dataset was loaded and augmented using the
torchvision library. The Adam optimizer was used for training,
with a learning rate (Ir) of 0.00001 and weight decay of
0.0005. To further improve convergence, a cyclic learning rate
scheduler was employed, varying the learning rate between
0.00001 and 0.0001 over 50 iterations.

The loss function used was cross-entropy loss, defined as:

N
L(y,9) =— Z yi log(y;)

where y is the true label and ¢ is the predicted probability
distribution.

1) Evaluation: The model’s performance was evaluated
using accuracy on the validation and test datasets by cal-
culating the ratio of correct predictions to total samples.
Training and validation losses and accuracies were monitored
to ensure generalization. The final test accuracy was obtained
by comparing the model’s predictions to actual labels on the
test set.

III. RESULTS & EVALUATION
A. Experiment Description

The experiments used a CNN for the Flowers-102 image
classification task. The architecture includes convolutional
layers for feature extraction, batch normalization for stability,
dropout layers for regularization, and fully connected layers
for classification.



Conv
W (32x3x3x3)
B (32)

Fig. 1. Network Architecture Diagram

32x3x224x224

B. Evaluation Metrics

The primary performance metric was classification accuracy,
calculated as the ratio of correct predictions to total images,
for both validation and test datasets. Training and validation
loss values were also monitored to assess model convergence.

C. Results & Initial Conclusions

Summary of the results and conclusions from various ex-

periments conducted during this project:

o Experiment 1: The initial simple model with only one
CNN layer and ReLU activation achieved a test accuracy
of 6.0%, indicating insufficient complexity.

o Experiment 2: dding data augmentation techniques
like RandomRotation (), ColorJitter (), and
RandomGrayscale () increased the test accuracy to
8.6%, enhancing the model’s ability to generalize.

o Experiment 3: Increasing the number of convolutional
layers to 2 improved the test accuracy to 17.8%, allowing
the model to capture more detailed features.

o Experiment 4: Adding batch normalization further im-
proved the test accuracy to 23.0%, stabilizing and accel-
erating the training process.

o Experiment 5: Changing the activation function to ELU
addressed the dying ReLLU problem, resulting in a signif-
icant improvement to 41.0%.

o Experiment 6: Switching the scheduler from OneCy-
cleLR to CyclicLR provided better learning rate adjust-
ments and led to the final test accuracy of 48.74%,
demonstrating improved convergence and generalization.

D. Justification of Choices

The CNN was chosen for its proven effectiveness in image
classification. The Adam optimizer was used for its adap-
tive learning rate, aiding faster convergence. The CyclicLR
scheduler dynamically varied the learning rate to avoid local
minima.

E. Optimization Algorithm and Hyperparameters

The Adam optimizer was used with the following parame-
ters:

e Learning rate: 0.00001

o Weight decay: 0.0005

The CyclicLR scheduler parameters were:

e Base learning rate: 0.00001
o Max learning rate: 0.0001

MaxPool

Identity

input (256)

BatchNormalization Gemm

Identity
N scale (256) B (102x256)

Gemm

B (256x200704)
C (256)

Reshape

o Step size up: 50

o Step size down: 50

The hyperparameters used for training included:
o Batch size: 32

o Dropout rate: 0.4

o Number of epochs: 1200

FE. Classification Test Accuracy and Evaluation Setup

The final classification test accuracy achieved by our model
was 48.74%.
1) Evaluation Setup:
a) Procedure:

o The test dataset was loaded and preprocessed by resizing
the images to 256x256 and normalizing them using
mean [0.485, 0.456, 0.406] and standard deviation [0.229,
0.224, 0.225].

o The preprocessed images were fed into the trained CNN
model to obtain predictions.

o The model’s predictions were compared against the true
labels of the test dataset to compute the accuracy.

G. Hardware and Environment

Used T4 GPU on Google Colab and departmental compute
server

H. Training Time

The total training time for the network was approximately
10 hours, the model was trained for 1200 epochs to ensure
convergence and optimal performance.

IV. CONCLUSION & FURTHER WORK

In conclusion, the CNN achieved a test accuracy of 48.74%
on the Flowers-102 dataset, indicating a moderate level of
performance. The chosen architecture, with its convolutional
layers, ELU activation, batch normalization, max pooling,
dropout, and fully connected layers, proved effective but has
room for improvement. Data augmentation and the cyclic
learning rate scheduler enhanced generalization and training
efficiency. While the model performed reasonably well, there
were challenges in achieving higher accuracy, likely due to
the complexity of the dataset and the need for more advanced
techniques. For further work, exploring deeper architectures or
using transfer learning from pre-trained models could improve
performance. Additionally, fine-tuning hyperparameters and
enhancing data augmentation strategies might yield better
results.



